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Abstract: In-context imitation learning (ICIL) enables robots to learn tasks from
prompts consisting of just a handful of demonstrations. By eliminating the need
for parameter updates at deployment time, this paradigm supports few-shot adap-
tation to novel tasks. However, recent ICIL methods rely on Transformers, which
have computational limitations and tend to underperform when handling longer
prompts than those seen during training. In this work, we introduce RoboSSM,
a scalable recipe for in-context imitation learning based on state-space models
(SSM). Specifically, RoboSSM replaces Transformers with Longhorn — a state-of-
the-art SSM that provides linear-time inference and strong extrapolation capabili-
ties, making it well-suited for long-context prompts. We evaluate our approach on
the LIBERO benchmark and compare it against strong Transformer-based ICIL
baselines. Experiments show that RoboSSM extrapolates effectively to varying
numbers of in-context demonstrations, yields high performance on unseen tasks,
and remains robust in long-horizon scenarios. These results highlight the potential
of SSMs as an efficient and scalable backbone for ICIL.
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1 Introduction

Imitation Learning (IL) is a powerful framework that enables robots to learn behaviors from demon-
strations without explicit programming or reward design [1, 2]. While IL has achieved notable
success in manipulation and navigation tasks, a key limitation of conventional imitation learning
lies in its restricted adaptation capability, particularly when faced with new tasks. Even with models
trained on large multi-task datasets [3, 4, 5, 6], adapting to novel tasks still requires collecting a
large amount of task-specific data and retraining, which can be computationally costly and often
unstable [7, 8]. To address this challenge, In-Context Imitation Learning (ICIL) introduces a new
paradigm, inspired by the success of large language models (LLMs) [9, 10, 11] in adapting to un-
seen language tasks through few-shot learning [12]. ICIL integrates the concept of prompting into
imitation learning [13, 14, 15, 16, 12, 17, 18, 19], allowing the model to infer and perform tasks
based on a prompt composed of demonstrations, with no post-demonstration training.

Given that ICIL formulates imitation learning as a sequence modeling problem, recent ICIL ap-
proaches have naturally adopted Transformer-based models as their primary architecture [17, 19,
18]. Although Transformers are the dominant architecture for sequence modeling [20], their time
complexity scales quadratically with sequence length, and they struggle to extrapolate beyond train-
ing lengths [21, 22]. For ICIL to handle long prompts efficiently at test time, it is essential to adopt
alternatives to Transformers that enhance scalability with input length. In this paper, we introduce
RoboSSM, a scalable in-context learning framework that replaces Transformers with state-space
models (SSMs). Specifically, RoboSSM utilizes Longhorn [23], a state-of-the-art SSM with linear
inference time and strong extrapolation capability for long-context sequences. Leveraging these
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properties, RoboSSM can process substantially longer prompts at test time compared to previous
Transformer-based ICIL methods.

On the LIBERO [24] benchmark, RoboSSM uniquely benefits from using more in-context examples,
maintaining high success rates on unseen tasks when trained with only a few demonstrations. For
instance, on the task pick up the plate and place it in the tray, where the plate object was unseen
during training, RoboSSM achieves its highest performance when prompted with 32 demonstrations,
despite being trained on only two. Furthermore, our framework performs well on unseen long-
horizon tasks, which we simulate by repeating frames in the demonstrations to create time-dilated
scenarios. Consequently, RoboSSM handles test-time demonstration prompts up to 16 times longer
than those seen in training while maintaining linear inference time, whereas Transformer-based
ICIL methods sharply degrade once the test prompt exceeds the training length. These findings
confirm that RoboSSM establishes a scalable in-context imitation learning framework by effectively
leveraging long-range contextual information.

2 Related Work

In this section, we provide an overview of prior ICIL methods and state-space models (SSMs), along
with their recent applications to robotics.

2.1 In-Context Imitation Learning

Imitation learning [1, 2, 25, 26] has long been a foundation for imparting skills to robots by learning
from demonstration data. Standard behavior cloning approaches [27, 28] typically train a separate
policy for each task or rely on large multi-task datasets to acquire broader skills. While multi-task
imitation learning [3, 4] can handle diverse tasks, these methods still struggle to perform completely
unseen tasks without additional data collection for fine-tuning.

Inspired by the in-context learning paradigm in large language models (LLMs) [12], recent imitation
learning methods aim to eliminate parameter updates at test time, instead prompting a multi-task
policy with a few demonstrations of unseen tasks. Keypoint Action Tokens [19] introduce an ICIL
framework that converts the visual observations and actions into tokens, which are fed into a pre-
trained large language model. ICRT [17] performs in-context learning using a causal Transformer
that predicts actions with next-token prediction, conditioned on a prompt consisting of a sequence
of encoded teleoperated demonstrations. LipVQ-VAE [18] is an action tokenizer that uses vector
quantization to address the lack of temporal smoothness in existing tokenizers and enable ICIL.

Although ICIL methods have been extensively studied and have achieved significant progress, they
are typically trained and evaluated on test prompts that closely match the training prompt distribution
in terms of length. For instance, ICRT learns from inputs containing five demonstrations and masks
the first random & of them as the prompt, then at inference time is evaluated with three demonstration
prompts. LipVQ-VAE is trained and evaluated using only a single full demonstration as the prompt.
In contrast, RoboSSM explicitly aims to handle prompts that significantly deviate from the training
distribution, such as those containing a larger number of demonstrations or long-horizon tasks.

2.2 State-Space Models

State-space models (SSMs) have emerged as a promising alternative to Transformers for sequence
modeling in language tasks, addressing the quadratic time complexity of Transformers and their
limitations in handling long contexts. SSMs originate from classical control theory and are partic-
ularly inspired by continuous-time linear dynamical systems. By discretizing the continuous-time
formulation, SSMs can be expressed as discrete-time models that update the hidden state s; via a
linear recurrence:

sp = Asy_1 + By, (D
where x; is the input and A and B are the state transition matrices. Recent SSMs aim to design the
transition matrices A, B and the recurrence formulation. S4 [29], H3 [30], S5 [31], Mamba [32],
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Figure 1: Overview of RoboSSM. Training (left): Longhorn receives Ni;,in trajectories from
Phrain and a query trajectory for the same task. Inference (right): Given N trajectories from
Prest containing unseen tasks, the model predicts actions and updates the environment iteratively
from the initial observation embedding.

and Longhorn [23] have introduced structured state transition matrices and parallel computation
schemes to enhance efficiency and capabilities. In particular, recent SSM architectures enable linear-
time inference and demonstrate strong extrapolation capabilities over long-range contexts, while
achieving comparable performance to Transformers in language modeling tasks.

As SSMs have evolved, their applications have expanded beyond language modeling to various
other domains, including robotics. For instance, S5 is applied to reinforcement learning by allowing
hidden state resets within a trajectory [33]. MAIL [34] proposes a novel imitation learning policy
by leveraging Mamba. Building on these extensions, we explore using Longhorn, a recent state-of-
the-art model, to perform in-context imitation learning.

3 Method

Our objective is to learn an ICIL policy 7y that maximizes the success rate on unseen tasks when
conditioned on few-shot demonstrations. In this section, we describe how RoboSSM implements 7
with Longhorn [23] and how it processes trajectory prompts during training and inference.

3.1 Architecture

RoboSSM first processes the observations with multimodal encoders. The per-step encoded obser-
vation embeddings are then passed through the Longhorn state-space block to generate actions.

Input Encoding RoboSSM encodes multimodal observations at each time step of a demonstra-
tion. Visual data are processed by convolutional neural networks (CNNs), and proprioceptive data
are embedded using multi-layer perceptrons (MLPs). The per-step features from each modality are
concatenated and projected through an MLP to produce an observation embedding. To prevent the
model from trivially copying the actions in the prompt, we exclude actions from the input repre-
sentation. We further exclude any task language instructions to force the model to attend to the
in-context demonstrations.

Longhorn state-space block The sequence of observation embeddings {z;}7_; is fed into
Longhorn, which recurrently updates a memory state matrix s, € R*™. At each time step, the
input is interpreted as a key—value pair (k;, x;), with z; € R? and k; € R™ obtained via a linear
projection of x;, analogous to how Transformers use keys in the attention mechanism. Longhorn
then performs a recurrent update:

st = A © s4—1 + By, 2



where ©® denotes the element-wise product, and Ay, B; : R4 — R¥*™ are functions of x;, defined

as
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where ® denotes the outer product and 3; € R? is a weighting vector. From the updated state, we
compute a context vector:

re = s € RY, 4)
where ¢; € R™ is a query vector derived from a linear projection of z;. Finally, this context vector

is passed through an output head to produce the corresponding action a.

Longhorn for In-Context Imitation Learning From an online-learning perspective, the recurrent
form in (2) can be derived as the solution to the following online convex programming objective [35]:

_ - _ 2 2
so=arg_min {|ls = se1l[B + skt = o2l uggon | (5)
where || - || is the Frobenius norm and 3; € R? is a weighting vector. This objective balances two

competing goals inherent in online learning: the first term encourages the updated state s; to remain
close to the previous state s;_1, while the second term enforces that the current state s; accurately
reflects the new input, allowing the model to incorporate newly observed information. The weighting
vector (3; modulates this trade-off by controlling the relative importance of the current observation
embedding; it is obtained by applying a sigmoid activation to a linear projection of the input x;.
In this online regression view, the use of f; in equation (5) naturally mitigates forgetting while
integrating new information, thereby enabling efficient in-context learning with long contexts.

3.2 In-Context Imitation Learning

Following the standard ICIL formulation, RoboSSM conditions on a context of demonstration tra-
jectories during both training and inference. At test time, the policy adapts to new tasks based solely
on the provided demonstrations, without any parameter updates.

Each input to the policy consists of a prompt and a query trajectory. The prompt P contains N
trajectories that provide task context:

P:[Tl77—2a"'7TN]; (6)

where each demonstration trajectory 7; is a sequence of 7; observation embeddings:

T, = {ogi),og),...,og?}, (7)

7

and ogi) denotes the ¢-th observation embedding from the ¢-th demonstration.

Figure 1 illustrates the training and inference procedure of the policy 7g. At each time step ¢, given
a prompt P and the sequence of query observation embeddings of,, the policy predicts the next
action for the query trajectory as:

ar =mg(P;of,...,00), t=1,...,T,. (8)

Both the prompt and the query trajectory are sampled from demonstrations of the same task. During
training, the output actions of both the prompt and the query are supervised using the ground-truth
actions. We adopt a multi-task learning approach following ICRT [17], enabling the policy to infer
the task intent from the prompt and to generalize to unseen tasks.

At inference time, the query trajectory is initialized with the first observation embedding of. The
policy then iteratively outputs the next action using the contextual information in P and applies the
action to the environment, gradually building on the resulting observations until the task is complete.
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Figure 2: We evaluate RoboSSM on challenging manipulation tasks from the LIBERO benchmark.
In LIBERO-90, the Study and Living Room suites each comprise 4 different scenes, while the
Kitchen suite comprises 10 different scenes.

4 Empirical Results

In this section, we evaluate whether RoboSSM can execute unseen tasks based on demonstration
prompts, comparing it to previous state-of-the-art ICIL methods. Section 4.1 describes the experi-
mental setup, including dataset construction. We consider two regimes: out-of-distribution to assess
length generalization with [Piest| > |Pirain| (Sec. 4.2), and in-distribution where | Piest| = |Ptrain]|
(Sec. 4.3). We then compare RoboSSM against a multi-task learning (MTL) policy without in-
context learning on unseen tasks (Sec. 4.4) and investigate the effect of 3-scaling in Longhorn for
ICIL (Sec. A.2). Additionally, we provide latent-space visualizations of trajectories (Sec. 4.5) and
an inference runtime analysis (Sec. A.3).

We design our experiments to answer the following research questions:

* Q1: Can RoboSSM extrapolate to prompts composed of demonstrations that are longer
than those used in training?

* Q2: How many training demonstrations are required for RoboSSM to effectively infer with
long prompts?

* Q3: Can RoboSSM achieve comparable performance to Transformer-based baselines when
the test-time prompt length is equal to that used in training?

* Q4: Can RoboSSM achieve superior performance on unseen tasks compared to multi-task
learning?

4.1 Experimental Setup

Datasets We conduct experiments on the LIBERO benchmark [24], a challenging benchmark for
visuomotor robot manipulation. LIBERO consists of five task suites: LIBERO-Object, LIBERO-
Goal, LIBERO-Spatial, LIBERO-Long, and LIBERO-90. LIBERO-90 consists of 90 tasks, while
each of the other suites contains 10 tasks. Each task contains 50 demonstration trajectories.

In our experiments, we use the full LIBERO-Object suite and divide LIBERO-90 into three task
suites based on scene type, including kitchen, living room, and study scenes, as shown in Figure 2.
For all experiments, the test set Dy, contains tasks that are completely disjoint from the training set
Durain, ensuring that models are evaluated on entirely unseen tasks. We set |Dieg| = 2 for all task
suites, and |Dy,in| = 8 except for the living room suite, where | Dyin| = 14.

Baselines We compare RoboSSM with ICRT [17], a Transformer-based in-context imitation
learning method that employs LLaMA2-Base [10] as its backbone. To ensure a fair comparison,
we configure both backbones to have a similar number of parameters. Both baselines use 4 blocks
from their respective backbones. We use LLaMA2-Base with 6 attention heads per layer and a hid-
den size of 512. For Longhorn, the input is projected to a value dimension d = 512 and the keys and
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Figure 3: Comparison of RoboSSM and ICRT across test-time demonstrations (/NViest), With both
models trained with N5, =2. ICRT’s performance drops sharply once Niegt > Nirain-
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Figure 4: Results with a fixed test-time prompt Niest = 8 across models trained with different
numbers of demonstrations (NVi,ain)-
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Figure 5: Results with a fixed test-time prompt Niest = 32 across models trained with different
numbers of demonstrations (N4 ). ICRT yields zero success across all Nipain-

queries are projected to m = 16. We also implement multi-task learning (MTL) without in-context
learning for each backbone, where MTL-TF uses LLaMA2-Base and MTL-SSM uses Longhorn.
Unlike RoboSSM and ICRT, these MTL baselines take language instructions as input to specify the
task.

4.2 Prompt Length Generalization

We investigate long-range in-context imitation learning with RoboSSM, focusing on prompt-length
extrapolation to out-of-distribution contexts. In this section, we consider two approaches to making
the test prompt substantially longer than the training prompt (|Piest| > |Ptrain|): (1) increasing the
number of demonstrations and (2) applying temporal dilation to demonstrations. These experiments
are conducted on LIBERO-Object, LIBERO-90 Study, and the Living Room Scene.

4.2.1 Number of demonstrations

To measure how performance changes when the number of test-time demonstrations differs from that
of training, we train models with a small number of demonstrations Ni;.;, = 2. We then evaluate
them on test prompts with Niest € {1,2,4,8,16,32}. Additionally, to assess how many training
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Figure 6: Comparison of RoboSSM and ICRT when evaluated on test-time prompts with temporally
dilated demonstrations.
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Figure 7: Results of RoboSSM and ICRT on in-context imitation learning, where the prompt consists
of the same number of demonstrations during training and testing (NVirain = Ntest)-

demonstrations are needed for long-range in-context learning, we train with Ny, € {1,2,4,8}
and evaluate with fixed test-time prompts Niest € {8, 32}.

As shown in Figure 3, RoboSSM maintains or even slightly improves its success rates as Nyest
increases beyond Ni;ain. On LIBERO-Object, RoboSSM achieves its best performance at Niest =
32, which is 16 times longer than the training prompt length |Pk,4in |, despite never having observed
such long prompts during training. This result answers Q1 affirmatively, showing that RoboSSM
extrapolates effectively to prompts far longer than the training horizon. In contrast, ICRT degrades
sharply once Niest > Nirain and collapses on the long prompts. This result suggests that ICRT
fails to generalize to longer prompts, performing reliably only when Ny is equal to or shorter than
N train-

According to Figure 4 and 5, RoboSSM achieves strong long-range in-context learning even when
trained with few task examples, addressing Q2. With N5t = 8, ICRT is comparable to RoboSSM
only when trained with demonstrations matching the test-time prompt length. Notably, with the
longer test prompt (Niest = 32), RoboSSM maintains high success rates despite limited training
demonstrations, whereas ICRT collapses to 0% success rate for all N, aip.

4.2.2 Time dilation

In real-world scenarios, robot demonstrations may vary in execution speed due to factors such as
operator latency, hardware variability, or differing task conditions. To simulate such temporal vari-
ability, we evaluate whether the model can generalize to time-dilated demonstrations at test time. We
create temporally stretched demonstrations by repeating each observation embedding in the original
trajectory « times, resulting in a new trajectory of length « - T', where T is the original trajectory
length and o € {1,2,4,8,16} is the dilation factor. Although models are trained with the origi-
nal prompt length (o« = 1), we evaluate their robustness under extended test-time prompts, where
|Piest| = @ - |Pirain|, With a up to 16.

Figure 6 indicates that RoboSSM sustains competitive success rates across increasing dilation factors
«, highlighting robustness to temporal stretching and long-context extrapolation (Q1). By contrast,
ICRT exhibits a consistent performance decay with «, culminating in failure on the longest prompts.




Table 1: Comparison of RoboSSM and ICRT with multi-task learning policies using their respective
backbones. w/ lang denotes that language instructions are included in the input, and w/o lang denotes
that language instructions are excluded. Both ICIL frameworks consistently outperform the MTL
baselines.

LIBERO-90
Method LIBERO-Object  Study Scene  Living Room Scene  Kitchen Scene
MTL-TF 24.6 + 1.7 14.6 £ 6.4 25+£35 0.0+ 0.0
MTL-SSM 204 +3.3 15.0+423 04+09 0.0£0.0
ICRT [17]
w/o lang 66.3 + 3.8 225+6.1 2334+28 0.0+ 0.0
w/ lang 483+ 59 21.24+3.8 27.1+37 0.0+0.0
RoboSSM
w/o lang 579 +£35 342 4+3.7 33.8+4.5 38+13
w/ lang 454 +23 354+ 4.7 29.2+53 0.0+0.0
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Figure 8: Visualization of latent representations for (a) ICRT and (b) RoboSSM with Ny = 8
(left) and Nyt = 16 (right). Blue corresponds to prompt demonstrations and red to the predicted
trajectory.

4.3 In-distribution ICIL

We evaluate RoboSSM and ICRT on in-distribution tasks, where Niyain = Niest € {1, 2, 4, 8}, cov-
ering varying numbers of demonstrations. This evaluation addresses Q3 when both models operate
under distributional conditions similar to those in training. Given that Longhorn exhibits perfor-
mance parity with Transformers in language modeling tasks, we expect it to demonstrate comparable
performance to Transformers in this setting.

Nevertheless, as shown in Figure 7, RoboSSM consistently achieves higher success rates than ICRT
across most scenarios, particularly in the LIBERO-90 Study and Living Room scenes. This perfor-
mance is likely due to the Longhorn architecture, whose formulation as an online regression prob-
lem enhances its in-context learning capability. However, both models struggle in the LIBERO-90
Kitchen scene, likely due to the inherent difficulty of the tasks in that suite.

4.4 Comparison to Multi-Task Learning

We compare RoboSSM against multi-task learning baselines, MTL-TF and MTL-SSM. During
training, we set Niain = 4, and for evaluation, Nyt = 0 for MTL baselines, while Nyt = 4
for RoboSSM and ICRT. To enable a fair comparison with language-conditioned MTL, we addition-
ally train and evaluate RoboSSM and ICRT with language instructions. In response to Q4, Table 1
shows that RoboSSM and ICRT reliably surpass the MTL baselines across their respective back-
bone architectures. However, the inclusion of language does not lead to improved performance on
unseen tasks, as the language instructions serve to identify tasks [24]. These results demonstrate
that RoboSSM effectively handles unseen tasks without any parameter updates and that RoboSSM
achieves stronger performance compared to prior methods.



4.5 Latent Space Analysis

Figure 8 displays visualizations of per-timestep latent representations using two-dimensional t-
SNE [36], covering both the prompt demonstrations and the subsequent predicted trajectory. For
ICRT, we plot the MLP output from the final LLaMA2-Base block. For RoboSSM, we plot the
query-projected state from the final Longhorn block, as defined in equation (4). RoboSSM gener-
ates trajectories that stay close to the prompt demonstration clusters, indicating stable long-context
extrapolation. In contrast, ICRT produces trajectories that drift far outside the prompt manifold,
with the deviation becoming more pronounced as the number of prompt demonstrations increases.

5 Conclusion

In this work, we introduce RoboSSM, a scalable in-context imitation-learning framework built on
state-space models (SSMs). RoboSSM executes unseen tasks and exhibits strong prompt-length
extrapolation, handling few-shot prompts with linear-time inference. Across the LIBERO bench-
marks, it processes prompts up to 16 times longer than those seen in training and outperforms
Transformer-based ICIL methods, highlighting SSMs as a promising backbone for long-context
robotics. Building on these results, RoboSSM can support continual adaptation for lifelong learn-
ing by simply being fed demonstration prompts for new tasks, without any task-specific parameter
updates. Despite this potential, our study is limited in its coverage of more complex, compositional
tasks. Moreover, comprehensively addressing novel tasks will require broader and more diverse
training corpora. Future work may explore scaling datasets in both size and diversity to enable more
effective generalization to novel tasks and complex task suites.
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A Appendix

A.1 Implementation Details

We use a single NVIDIA A100 GPU for all models and task suites. During training, we use the
AdamW [37] optimizer with weight decay le-4, 5; = 0.9, and B2 = 0.999. The learning rate
follows a cosine decay schedule from le-4 to 1e-5. We use front-view and hand-view RGB images
for visual observations, and the robot’s joint angles and gripper state for proprioception. For visual
observations, data augmentation includes color jitter with brightness, contrast, and saturation factors
of 0.3, and a random masking scheme that applies up to 8 square masks of size 16 x 16. Models are
trained for 200 epochs with a batch size of 4. During evaluation, we execute 20 rollouts per task,
generate trajectories of up to 200 time steps, and report the average success rate over all tasks in the
suite across 6 random seeds.
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Figure 9: Effectiveness of test-time [-scaling
across task suites. Figure 10: Inference runtime on LIBERO-

Object for ICRT and RoboSSM.

A.2  [(3-Scaling of Longhorn for ICIL

We rescale the weight vector 8 in equation (5) at test time as 8; =  (; to investigate how regu-
lating the trade-off between reliance on the previous state and incorporation of new inputs affects
RoboSSM. Figure 9 reports results for Nyest = 8 and Nyyain = 2 with y € [0.4, 1.0]. Decreasing
[ improves performance on several task suites by biasing the model toward attending to prior state
information.

A.3 Runtime Analysis

Figure 10 reports the inference runtime on LIBERO-Object. Each run uses a prompt constructed
from Niesr demonstrations and executes T, = 200 action-update steps. Empirically, RoboSSM
achieves lower runtime, whereas ICRT’s runtime increases rapidly as the number of demonstrations
grows. RoboSSM scales nearly linearly with the prompt length L, yielding total work O(L +
T,). In contrast, ICRT, with a LLaMA-2 backbone and a KV cache, incurs O(L?) prefill over the
prompt and O(T;,) decoding for next-action prediction. Its runtime therefore increases markedly
more rapidly as L grows, widening the runtime gap in favor of RoboSSM at longer prompt lengths.
Overall, RoboSSM maintains efficient inference with long-context demonstrations.
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